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A B S T R A C T   

The potential airborne transmission of SARS-CoV-2 has triggered concerns as schools continue to reopen and 
resume in-person instruction during the current COVID-19 pandemic. It is critical to understand the risks of 
airborne SARS-CoV-2 transmission under different epidemiological scenarios and operation strategies for schools 
to make informed decisions to mitigate infection risk. Through scenario-based analysis, this study estimates the 
airborne infection risk of SARS-CoV-2 in 111,485 U.S. public and private schools and evaluates the impacts of 
different intervention strategies, including increased ventilation, air filtration, and hybrid learning. Schools in 
more than 90% of counties exhibit infection risk of higher than 1%, indicating the significance of implementing 
intervention strategies. Among the considered strategies, air filtration is found to be most effective: the school 
average infection risk when applying MERV 13 is over 30% less than the risk levels correlating with the use of 
increased ventilation and hybrid learning strategies, respectively. For most schools, it is necessary to adopt 
combined intervention strategies to ensure the infection risk below 1%. The results provide insights into airborne 
infection risk in schools under various scenarios and may guide schools and policymakers in developing effective 
operations strategies to maintain environmental health.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
identified as the virus that causes the coronavirus disease 2019 (COVID- 
19). The outbreak of COVID-19 spreads over 220 countries and terri-
tories (JHU, 2021), causing global pandemic and threatening human 
life, which reveals the urge of improving human health as an important 
goal of sustainability development (Hakovirta & Denuwara, 2020). 
Schools are considered high-risk environments for the transmission of 
infectious diseases due to the close and frequent contact and commu-
nication that occur among students and teachers. The negative impacts 
of crowded and poorly-ventilated indoor environments further raise 
concerns about the student health in schools. 

The COVID-19 pandemic has resulted in the enactment of social 
distancing policies, with school closures existing among the first actions 
taken by governments worldwide. In the United States, prolonged school 
closures have affected about 55 million students enrolled in more than 
130,000 K–12 schools and their parents in the U.S. (CDC, 2014), 
impacting their mental and physical health as well as education due to 

the variable efficiency of remote learning and by placing additional 
childcare burdens on their parents. At this stage in the pandemic, which 
is marked by increasing vaccine rollout, many schools in the U.S. are 
considering reopening or have already reopened for in-person instruc-
tion. However, concerns persist as the chance of contracting and trans-
mitting COVID-19 increases in crowded indoor environments. Although 
several studies have indicated that children are less susceptible to 
experiencing severe COVID-19 (Yuki et al., 2020; Lee et al., 2020), those 
with mild or asymptomatic cases without confirmed diagnoses and 
treatment may facilitate rapid transmission of the disease within schools 
and to households and the surrounding communities. So far, it is not 
recommended for K–12 schools to screen all students for symptoms of 
COVID-19 on a routine basis (CDC 2021a), which poses a potential risk 
for the spread and outbreak of the disease within schools. In addition, no 
vaccines have yet been approved for children and, even in vaccinated 
people, the risk of SARS-CoV-2 infection is not entirely eliminated 
(CDC, 2021b). Due to the important role of schools in children’s growth 
and the high prevalence of COVID-19 across the U.S., non-
pharmacological interventions are required to help limit the spread of 
COVID-19 and other respiratory illnesses and maintain a healthy 
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environment in schools. 
Several studies have demonstrated that SARS-CoV-2, like other res-

piratory viruses (e.g., influenza, tuberculosis, and measles (Ather et al., 
2021), can be transmitted by way of an airborne route (Morawska & 
Cao, 2020; Setti et al., 2020), wherein the infectious aerosols are 
dispensed and suspended over long distances in the air, and inhaled by 
the susceptible individuals (WHO, 2021). The spread of airborne dis-
eases indicates the significance of dedensification and introducing fresh 
air into the crowded and poorly-ventilated buildings. For schools, 
dedensification can effectively help students to maintain adequate 
physical distancing and can be achieved by the use of hybrid learning. 
Meanwhile, improved ventilation and air filtration can introduce fresh 
air and dilute the concentration of airborne infectious particles indoors. 
However, the infection risks in schools of different levels (e.g., 
elementary vs. high schools) and how different intervention strategies 
quantitatively influence infection risk in different pandemic scenarios 
given various relevant school and disease factors (e.g., occupant density, 
school hours, pulmonary ventilation rate) remain elusive. 

To close this gap, this study conducted scenario-based analyses to 
examine the relationship between the risk for airborne infection and 
different intervention strategies in 111,485 public and private schools in 
the U.S., using the COVID-19 pandemic as the epidemiological context. 
Specifically, two epidemiological scenarios were employed to predict 
both the long- and short-term risks under different intervention strate-
gies. Monte Carlo simulation (MCS) and sensitivity analysis were also 
performed to exploit the impacts of various school characteristics and 
epidemic situation. The results provide insights for schools and gov-
ernments regarding the control of infection risk using effective mitiga-
tion measures. Although this study focuses on controlling the SARS-CoV- 
2 infection risk in U.S. schools, the framework can be extended to other 
infectious diseases within other indoor environments in other countries, 
to maintain a healthy and sustainable environment. 

2. Data and methods 

2.1. Data description 

A total of 111,485 schools in the U.S., including 90,160 public 

schools and 21,325 private schools, were analyzed in this study. Basic 
information about schools was retrieved from the National Center for 
Education Statistics (NCES, 2021), including school type, school level, 
school location, and total numbers of students and teachers. Schools 
were divided into public schools and private schools and, based on the 
lowest and highest grades offered, stratified as follows: 
pre-kindergarten, elementary, middle, high, and secondary schools for 
public schools and elementary, secondary, and combined schools for 
private schools, respectively. The school population was determined as 
the sum of students and full-time–equivalent teachers. 

To assess the airborne infection risk in schools, the occupant density 
of school buildings was estimated from 1,433 representative schools 
across different levels. The representative schools with clear building 
characteristics shown in Google Maps (Google, LLC, Mountain View, CA, 
USA) were selected from the aforementioned 111,485 schools to retrieve 
the gross floor area. To reduce human errors in acquiring the gross floor 
area of the representative schools, a standard process was designed and 
followed: 1) the schools were observed using Google Maps street view to 
ensure that the building boundaries, the number of buildings, and the 
number of floors of each building can be clearly recognized; 2) For the 
buildings that were clearly recognized, the building area was manually 
collected using the area calculator tool in the Google Maps API by 
drawing an enclosed line along the building boundary; 3) A total of 
1,433 schools were finally selected to calculate the gross floor area. The 
gross floor area of each school building was computed as the product of 
the building area and number of floors; The gross floor area of the school 
was the sum of space of all school buildings. The occupant density of a 
school was computed as the ratio of school gross floor area to the school 
population. The mean and standard deviation values of occupant density 
of each school level were then estimated based on the corresponding 
representative schools. The relevant descriptive statistics are provided in 
Table 1. 

2.2. Epidemiological scenarios 

In this study, the following two epidemiological scenarios were 
considered: a one-year pandemic scenario based on long-term pro-
jections of COVID-19 prevalence and the current epidemiological sce-
nario across the U.S. based on recorded COVID-19 infection cases to 
date. The one-year pandemic scenario indicated the temporal-varying 
prevalence, considering the seasonal variation and immunity duration 
of SARS-COV-2, and was used to provide insights into long-term stra-
tegies in school operations by estimating the general trend of infection 
risk in schools. Separately, the current epidemiological scenario 
demonstrated the county-level prevalence based on the records of 
confirmed cases and was used to provide guidance for timely adjustment 
of school operations based on local conditions. 

2.2.1. One-year pandemic scenario 
The long-term projection model developed in the study by Kissler 

et al. (2020) was adopted to estimate the nationwide prevalence of 
SARS-CoV-2 during the post-pandemic period. The transmission dy-
namics of SARS-CoV-2 were determined according to seasonal variation, 
duration of immunity, and cross-immunity due to prior transmission of 
other coronaviruses (e.g., HCoV-OC43, CoV-HKU1). Seasonal variation 
affected the peak incidence and severity of wintertime outbreaks, while 
the duration of immunity and the level of cross-immunity impacted the 
total incidence and the pattern of recurrent circulation. Specifically, this 
study used a one-year pandemic scenario with moderate seasonal forc-
ing (i.e., the R0 in summertime is 0.8 of that in wintertime), an immunity 
duration of 10 weeks, and no cross-immunity between SARS-CoV-2 and 
other coronaviruses. The relatively short immunity duration was 
assumed, considering the rapid decrease of SARS-CoV-2 antibody levels 
and the short duration between reinfections (Edridge et al., 2020; Long 
et al., 2020; Iwasaki, 2020). The resulting prevalence of COVID-19 (i.e., 
number of infections per 1,000 people) is illustrated in Fig. 1. 

Nomenclature 

ρ ratio of true infections to confirmed cases 
dc number of days from February 12, 2020 to the current 

date 
IR probability of susceptible individuals becoming infected 
I number of infectors 
V room volume (m3) 
N total disinfection rate of the environment (hr− 1) 
t exposure duration of susceptible individuals to infectors 

(h) 
p pulmonary ventilation rate (m3 /h)
φ quantum generation rate (quanta/h) 
cv viral load in the sputum (RNA copies/mL) 
ci conversion factor 
p standardized daily test-positivity rate 
D droplet diameter (cm) 
Vd volume of a droplet (cm3) 
Nd droplet concentration (#/cm3)

λventilation outdoor ventilation rate (hr− 1) 
kfiltration particle removal rate due to filtration (hr− 1) 
λrecirculated recirculation rate (hr− 1) 
ηfilter filtration efficiency  
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2.2.2. Current epidemiological scenario across the U.S 
Identifying the COVID-19 infection rate in local areas is critical to 

understand the current epidemiological scenario and develop corre-
sponding intervention strategies to mitigate infection risk in schools. 
However, the true number of infections is typically underestimated 
because a large proportion of infected individuals—especially those who 
are asymptomatic or only mildly symptomatic—develop the disease 
without a confirmed diagnosis. A study from the University of Texas at 
Austin (Fox, Lachmann, & Meyers, 2020) indicated that the reported 
cases should be multiplied by 3 to 10 as the lower and upper estimate of 
true infections. The Centers for Disease Control and Prevention (CDC) 
stated that approximately 1 in 4.3 total infection cases nationwide were 
reported (CDC, 2021c). In this study, the true number of current infec-
tion cases in each county was estimated based on the method developed 
by Gu (2021), where the relationship between the ratio of true infections 
to confirmed cases and the standardized test positivity rate can be 
computed using Equation 1: 

ρ =
1500

dc + 50
r0.5 + 2 (1)  

where ρ is the ratio of true infections to confirmed cases; dc is the 
number of days from February 12, 2020 to the current date; and r is the 
standardized daily test-positivity rate. The model standardizes the test- 
positivity rate across all states in the U.S. due to differences in the 
criteria and units of test reports. Most states use “test encounters” (TE) or 
“test specimens” (TS) to report test totals, but nine states use “unique 
individuals” (UI). TE, TS, and UI are three ways of counting the number 

of total tests. TE or TS is the number of people or specimens been tested 
per day, including the multiple tests on the same person. UI is the 
number of individuals being tested during the reporting period, with 
multiple tests on the same person removed. In (Gu, 2020), TE and TS 
results are treated as equivalent units, while UI results are converted to 
TE or TS values. The unit conversion factor (αm) was estimated as the 
daily average ratio of daily test totals, reported as TE or TS, to those 
reported as UI of states that provide data using both units (e.g., TE and 
UI or TS and UI). The adjusted daily TE or TS test total is the product of 
αm and the test total reported as UI. The daily standardized test- 
positivity rate can be determined with the state-adjusted test total. 
The parameters in Eq. (1) are determined through curve-fitting on his-
torical test positivity, serological surveys, and hospitalization data, 
where the constants are estimated using grid search. The true number of 
people becoming infected is the product of daily confirmed cases and ρ, 
and the county infection rate is computed as the true number of in-
fections divided by the county population size. 

2.3. Infection risk modeling 

With a focus on airborne transmission, infection risk in this study was 
defined as the probability that susceptible individuals will be infected 
via airborne transmission after one day of in-person school attendance. 
Infection risk was calculated using the Gammaitoni–Nucci (G-N) equa-
tion, a widely adopted method (Gammaitoni & Nucci, 1997) for indoor 
airborne infection risk assessment (e.g., influenza, tuberculosis, 
SARS-CoV-2). The G-N equation is a variation of an earlier model pro-
posed by Wells-Riley et al. (W-R equation) (Riley et al., 1978); this latter 

Table 1 
School information descriptive statistics.  

School Total Schools Representative schools Students FTE teachers Occupant density (m2/student) 

Mean SD Mean SD Mean SD 

All schools 111,485 1,433 427 432 30 25 14.93 5.45 
Public 90,160 1,106 538 440 33 25 14.99 5.07 
Private 21,325 327 192 250 16 21 14.72 6.6 
PK 1,131 56 175 171 9 10 16.04 5.88 
Elementary (K–5) 64,998 944 396 246 25 15 14.19 5 
Middle (grades 6–8) 16,087 127 595 350 37 21 16.52 5.54 
High 

(grades 9–12) 
20,785 148 717 743 43 41 16.02 5.6 

Secondary (grades 6–12) 2,475 72 306 351 26 26 17.39 6.19 
Combined (PK–12) 6,009 86 242 356 24 31 15.9 7.07 

FTE: full-time–equivalent; PK: pre-kindergarten; SD: standard deviation 

Fig. 1. Prevalence of COVID-19 in the population (generated based on Kissler et al. (2020)).  
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equation is based on the concept of the “quantum of infection,” ac-
cording to which the probability of infection is determined by the intake 
dose of airborne pathogens in terms of the number of quanta. Randomly 
distributed infectious particles in the air are considered to follow a 
Poisson distribution. The assumption of a steady-state particle concen-
tration is the main limitation of the W-R equation. To overcome this 
limitation, the G-N equation demonstrates concentration changes in 
quanta level using a differential equation and considers the 
time-weighted average pathogen concentration rather than assuming 
the steady-state concentration (Sze To & Chao, 2010). In the G-N 
equation, the probability of susceptible individuals becoming infected 
(IR) after a certain duration of exposure can be calculated using Eq. (2) 
(Beggs et al., 2010; Hota et al., 2020; Buonanno et al., 2020a), where I is 
the number of infectors, V is the room volume (m3), N is the total 
disinfection rate of the environment (hr− 1), t is the exposure duration of 
susceptible individuals to infectors (h), p is the pulmonary ventilation 
rate (m3 /h), and φ is the quantum generation rate (quanta/h). 

IR = 1 − e
−

pIφ
V

(

Nt+e− Nt − 1
N2

)

(2) 

In this study, I was calculated differently according to the two 
epidemiological scenarios. In the one-year pandemic scenario, I was 
estimated as the product of the school population and the prevalence of 
COVID-19 in the population divided by 1,000 (note the prevalence of 
COVID-19 is the number of positive cases per 1,000 people in the one- 
year pandemic scenario). In the current epidemiological scenario, I 
was the product of the county infection rate and school population. V 
was estimated as the product of the occupant density, school population, 
and the height of the classroom, where a height of 3 m was assumed for 
all schools (DOE, 2009). t was set as the number of hours in a typical 
school day, varying across different states according to (NCES, 2008). N 
is the effect of introducing and circulating fresh air in the building. In 
this study, a ventilation rate of 2 hr− 1 was set as the baseline rate 
(Batterman et al., 2017). Because p varies with different age groups 
(EPA, 2011), different values were assigned to each school level 
(Table 2), and φ for SARS-CoV-2 was estimated as a function of p using 
Eq. (3) as follows according to (G. Buonanno et al., 2020b): 

φ = cvcip

(
∑4

i=1
Vd,iNd,i,j

)

(3)  

where cv is the SARS-CoV-2 viral load in the sputum, set at 109 RNA 
virus copies mL− 1 (G. Buonanno et al., 2020b); ci is a conversion factor 
between the infectious quantum and infectious dose, set as 0.02 (G. 
Buonanno et al., 2020b); p is the pulmonary ventilation rate based on 
school level (m3 /h); Vd,i is the volume of a droplet calculated by the 
droplet diameter Di; and Nd,i,j is the droplet concentration per cm3 of 
droplet diameter i and expiratory activity j (see Table 3 for details). 
Since the quantum generation rate is related with the degree of infec-
tion, the individual difference of pulmonary ventilation rate, the activity 
the patient involved in, and the range of the quantum generation rate of 
SARS-CoV-2 varies in the literatures. The quantum generation rate for 
different school levels is in accordance with recent studies. Shen et al. 
(2021) indicated that the quantum generation rate for children under 16 
is 58 ± 31 h− 1; The quantum generation rate used in Buonanno et al. 
(2020b) is 142 h− 1 for subjects performing speaking and light activity. 
The estimated quantum generation rate in Dai and Zhao (2020) is 14–48 

h− 1. Generally, the quantum generation rates are from tens to hundreds 
in the literatures. In this paper, the quantum generation rate is set as 
31.16, 42.72, and 51.94 h− 1 for prekindergarten, elementary and com-
bined school students respectively, and is 61.16 h− 1 for middle, high, 
and secondary school students. 

2.4. Modeling the impact of different intervention strategies 

The impact of different intervention strategies on the airborne 
infection risk was modeled by modifying the parameters in Eq. (2). The 
considered intervention strategies included increasing the outdoor 
ventilation rate, implementing air filtration, adopting hybrid learning 
(students learning partially online), and a combination of these three 
strategies. 

1. Increase in outdoor ventilation rate (S1). Increasing the outdoor 
ventilation rate will bring in more fresh outdoor air to dilute 
contaminated indoor air, thus reducing the infection risk. This study 
modeled the impact of increasing the baseline ventilation rate by 
various levels (from 25% to 200% in steps of 25%) on the infection 
risk. 
2. Implementation of air filtration (S2). When filtration is applied in 
a building’s heating, ventilation, and air conditioning (HVAC) sys-
tem, the total disinfection rate of the environment (N) can be 
modeled as a combined effect of outdoor ventilation and filtration, 
computed as N = λventilation + kfiltration, where kfiltration is the particle 
removal rate due to filtration (Hota et al., 2020), which can be 
calculated using Eq. (4) (Azimi & Stephens, 2013) as follows: 

kfiltration = λrecirculatedηfilter (4)  

where λrecirculated is the recirculation rate, set as 6.4 hr− 1 (Chan et al., 
2016), and ηfilter is the filtration efficiency weighted by infectious 
particle size. American Society of Heating, Refrigerating and 
Air-Conditioning Engineers (ASHRAE) specifies the method by 
which to determine ηfilter based on the minimum efficiency reporting 
value (MERV) and particle size range (ASHRAE Standard 52.2-2017) 
and has suggested that filters with MERVs of at least 13 can effi-
ciently capture airborne viruses (ASHRAE, 2020). Therefore, the 
impact of adopting MERV 13 filters is estimated in this paper. The 
filtration efficiency of MERV 13 filters is 67.5% based on the 
assumed particle size range of SARS-CoV-2. (Morawska et al., 2020) 
indicates that more than half of the viral RNA of SARS-CoV-2 have 
aerosols smaller than 2.5 μm. In this study, it is assumed that half of 
the particles are 0.3 to 1 μm in size (50% average particle size effi-
ciency) and the other half are 1 to 3 μm (85% average particle size 

Table 2 
Pulmonary ventilation rate of each school level based on student age groups.  

Parameter PK Elementary Middle High Secondary Combined Reference 

Age (years) 3–5 5–11 11–14 14–18 11–18 3–18 NCES 
Pulmonary ventilation rate (m3/day) 7.28 9.98 14.29 14.29 14.29 12.135 Literature (EPA, 2011) 

NCES: National Center for Education Statistics; PK: pre-kindergarten 

Table 3 
Droplet concentration (per cm3) of different droplet size distributions during 
speaking activity (adapted from Buonanno et al., 2020b).  

Expiratory activity D1(0.8 
µm)  

D2 (1.8 
µm)  

D3 (3.5 
µm)  

D4 (5.5 
µm)  

Voiced counting 0.236 0.068 0.007 0.011 
Unmodulated 

vocalization 
0.751 0.139 0.139 0.059 

Note: Regarding respiratory activity, speaking is considered the main activity 
during school hours and is defined as the mean value between unmodulated 
vocalization and voiced counting. 
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efficiency). 
3. Hybrid learning (S3). Having part of the student body learn online 
reduces the school population and thus decreases the number of in-
fectors (I) given the specific prevalence of COVID-19 estimated from 
two epidemiological scenarios. In this paper, the impact of switching 
10%, 20%, 30%, 40%, and 50% of the students to online learning, 
respectively, was computed. 
4. Combined strategies. The impacts of different combinations of 
strategies—including increasing the ventilation rate and imple-
menting filters (S1 + S2, denoted as S4; increasing the ventilation 
rate and switching part of the student body to online learning (S2 +
S3, denoted as S5); and increasing the ventilation rate, implementing 
filtration, and switching part of the student body to online learning 
(S1 + S2 + S3, denoted as S6)—were considered. 

2.5. Modeling the impact of parameter uncertainties 

The risk of COVID-19 infection in schools may vary due to the un-
certainty of multiple parameters, such as occupant density, pulmonary 
ventilation rate, and exposure duration. In this study, MCS and sensi-
tivity analysis were used to quantify the influence of uncertainties of 
multiple parameters. 

2.5.1. MCS 
MCS is a method widely used to calculate possible outcomes as well 

as the associated uncertainty using multiple variables with different 
probability distributions. Based on Eq. (2), a stochastic MCS was 
developed to represent the uncertainty of infection risk. MCS demon-
strates the uncertainty and stochasticity of the factors, and the outcomes 
reveal the possible results with a large variation, indicating both average 
and extreme case scenarios of school infection risk (Karsten et al. 2005). 
In this study, the MCS contained three steps: random variable determi-
nation, random number generation, and simulation result acquisition. 

1 Random variable determination. Three parameters with un-
certainties that will influence infection risk in schools were treated as 
random variables, including occupant density, pulmonary ventila-
tion rate, and exposure duration in a school day. The possible range 
and empirical probability distribution of each variable were esti-
mated based on school information and existing literature and are 
detailed in Table 4.  

2 Infection risk simulation. Given a specific ventilation rate, 10,000 
simulations were conducted to estimate the school infection risk. In 
each simulation, a random number was generated using repeated 
random sampling from the empirical distributions of each input 
variable and used to compute the infection risk of all schools. In this 
study, 10,000 simulations were performed under a ventilation rate 
varying from 2 to 6 hr− 1. Specifically, the peak prevalence of COVID- 
19 in the one-year pandemic scenario was used when calculating the 
infection risk.  

3 Simulation result acquisition. For each school, 10,000 simulation 
results could be achieved using Eq. (2). For each simulation, the 
average infection risk was computed among all schools. The obtained 
result of 10,000 simulations indicates the distribution of average 
infection risk of schools nationwide. 

2.5.2. Sensitivity analysis 
Sensitivity analysis was conducted to evaluate the influence of in-

dividual parameters, including infection rate, exposure time, occupant 
density, and pulmonary ventilation rate. The estimated ranges and 
default values of the parameters are listed in Table 5. The infection rate 
was determined based on the current epidemiological scenario across 
the U.S. and ranged from 50% of the minimum estimated infection rate 
to 150% of the maximum estimated infection rate as of January 30, 
2021. The pulmonary ventilation rate used in the sensitivity analysis 
was the average pulmonary ventilation rate of elementary school stu-
dents (aged 6–11 years), because elementary schools account for more 
than 50% of the total number of schools nationwide. 

3. Results 

3.1. Infection risks under the one-year pandemic scenario 

Adopting the one-year pandemic scenario (Kissler et al., 2020), the 
infection risk of SARS-CoV-2 in 111,485 U.S. schools was estimated for a 
12-month period and reported per month in Fig. 2. A ventilation rate of 
two air changes per hour (ACH) in schools (Batterman et al., 2017) was 
used as the baseline to represent normal ventilation operation. The daily 
infection risk was derived based on the exposure time for each single 
school day, and was considered to remain unchanged within a single 
month. The average infection risks in schools exhibit strong patterns of 
seasonality, reaching a peak in winter months and a trough in summer 
months (e.g., the school average infection risk reaches 6.83% in 
December and drops to 3.85% in July), suggesting that adaptive mea-
sures could be implemented as a function of the seasonal risk to control 
infection. The prediction of a greater prevalence of COVID-19 (i.e., 
number of cases per 1,000 people) from November to February (Fig. 1) 
indicates a higher number of infectious students attending schools, 
elevating the infection risk. High schools exhibit the greatest average 
infection risk, followed by middle and secondary schools, while the 
infection risk in pre-kindergarten and elementary schools remains 
lower. Infection risk is largely affected by human pulmonary ventilation 
rate, which determines the amount of virus in aerosols exhaled by in-
fectious people and inhaled by susceptible people. The pulmonary 
ventilation rate of teenagers (14.29 m3/day) is almost twice that of 
younger children (7.28 m3/day) (EPA, 2011). Thus, with the same 
baseline ventilation and similar occupant density, middle and high 
schools would have higher risks than pre-kindergarten and elementary 
schools. The differences among schools in terms of infection risk suggest 
that time-varying intervention strategies could be adopted according to 
a school’s risk level and characteristics. 

Table 4 
Random variables used in MCS.  

Parameter PK Elementary Middle High Secondary Combined Distribution Reference 

Occupant density (m2/people) 5.34–27.97 3.49–28.82 6.76– 28.92 6.38– 29.26 4.08– 28.64 4.03– 37.75 Truncated normal Table 1 
Pulmonary ventilation rate(m3/day) 5.29– 9.27 7.11–12.85 9.56– 19.02 9.56– 19.02 9.56– 19.02 9.37–14.9 Truncated normal Literature (EPA, 2011) 
School day (hrs/day) 6.25–7.08 Truncated normal NCES, 2008 

NCES: National Center for Education Statistics; PK: pre-kindergarten 

Table 5 
Parameters used in the sensitivity analysis.  

Parameter Max. Min. Default 
value 

Reference 

Infection rate (%) 48.9 0 2.18 Literature (Gu 
2021) 

Exposure time (h) 7.08 6.25 6.67 NCES, 2008 
Occupant density(m2/ 

people) 
3.48 37.75 14.93 Table 1 

Pulmonary ventilation rate 
(m3/day) 

19.02 5.29 9.98 Literature (EPA, 
2011)  
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Fig. 2. Monthly average infection risk with normal school operation.  

Fig. 3. Monthly average infection risk under different intervention strategies.  
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Different intervention strategies have different impacts on the 
infection risk (Fig. 3). The results illustrate that, among the three basic 
intervention strategies—increasing the ventilation rate by 100% (S1), 
implementing MERV 13 filters (S2), and having half of the student body 
learn online (S3)—the infection risk under S3 is slightly lower than that 
under S1, while S2 is the most effective strategy and results in a 
significantly reduced infection risk relative to both S1 and S3. Among all 
schools, pre-kindergarten maintains the lowest average infection risk 
throughout the year, which can be controlled below a sufficiently low 
threshold (1% in this study) solely by implementing S2. In contrast, for 
the other school levels, combined intervention strategies are required to 
keep the infection risk below 1% throughout the year. The considered 
combined intervention strategies include the combination of S1 and S2 
(denoted as S4), the combination of S1 and S3 (denoted as S5), and the 
combination of S1 through S3 (denoted as S6). It was observed that the 
effects of S4 and S5 are almost the same, indicating that, if MERV 13 
filters are not compatible with the existing HVAC system, schools may 
have to consider S5 to achieve a similar degree of infection risk reduc-
tion. By implementing S6, elementary and combined schools can keep 
the infection risk below 1% throughout the year. However, in middle, 
high, and secondary schools, the infection risk may exceed 1% during 
wintertime, where more restrictive measures (e.g., further increasing 
the ventilation rate, implementing filters with a higher MERV rating, 
and increasing the proportion of students enrolled in online learning) 
may be necessary to maintain the infection risk at a sufficiently low 
level. Given the varying prevalence throughout the year, schools may 
select different strategies to ensure an acceptable risk while considering 
other factors, such as energy costs and learning outcomes. 

Fig. 4 presents the distribution of infection risk under various 
ventilation rates obtained using MCS. The results illustrate that the 
variation of infection risk decreases as the ventilation rate increases. For 
schools with the baseline ventilation rate (2 hr− 1), the mean infection 
risk is around 7% and the highest infection risk is 10%, demonstrating a 
high level of uncertainty and the significance of adopting intervention 
strategies. The efficiency of increasing the ventilation rate decreases as 
the ventilation rate increases: the infection risk decreases by 16.5% 
when the ventilation rate is increased from 2 hr− 1 to 2.5 hr− 1, while it 
only decreases by 8% when the ventilation rate is increased from 5.5 
hr− 1 to 6 hr− 1. Therefore, to further reduce the infection risk, increasing 
the ventilation rate alone may not be the most efficient strategy when 
considering the energy required. Schools might also contemplate 
adopting complementary mitigation measures to maintain low infection 
risk levels and energy costs. 

3.2. Infection risks under the current epidemiological scenario 

The infection risk for each state under different intervention strate-
gies is presented in Fig. 5. The average infection risk of a state is 
computed as the mean value of the infection risks over all counties in the 
state, and the range of the infection risk of a state is represented as the 
range of the infection risk of the counties with 95% confidence interval. 
The infection risk for each county is computed based on county epidemic 
situation and the characteristics of schools in the county. For most states, 
schools with the baseline ventilation rate show a high infection risk, 
with an average infection risk of 3.75%. Under the current epidemio-
logical scenario, more than 90% of counties exhibit an infection risk of 
greater than 1%, indicating the significance of implementing interven-
tion strategies to decrease the infection risk. The impacts of increasing 
the ventilation rate by 100% (S1) and having half of students learn 
online (S3) are similar, resulting in average infection risks of 1.98% and 
1.90%, respectively. Under both strategies, the infection risk of nearly 
20% of counties nationwide falls below 1%. Implementing MERV 13 
filters (S2) outperforms both S1 and S3, with an average infection risk of 
1.28%—35% and 33% lower than the infection risks calculated under S1 
and S3, respectively—resulting in an infection risk below 1% for 
approximately 40% of counties nationwide. 

The average infection risk of a given county is determined by the 
infection rate and the characteristics of the schools in that county. 
Counties with higher prevalence rates generally exhibit greater infection 
risk in schools. Fig. 5 shows that schools in the southeastern and 
southwestern U.S. are exposed to higher infection risks. Specifically, 
Arizona, South Carolina, Oklahoma, Mississippi, and Georgia are the 
five states with the highest infection rates (≥ 3.18%), and the schools in 
these states also have the highest levels of infection risk (≥ 5.5%). In 
addition, the infection risk in each county is also influenced by the 
characteristics of individual schools, especially the school level, which 
determines the school occupant density and the student pulmonary 
ventilation rate. Table 6 shows that the distribution of schools is similar 
across different states, indicating that a state’s average infection risk 
depends crucially upon the infection rate. However, as shown in Table 6, 
the county-level school distribution varies significantly, especially for 
elementary and high schools, demonstrating that, in addition to the 
county infection rate, school distribution contributes to the variation in 
infection risk. These results suggest that schools and policymakers 
should consider and adopt specific intervention strategies based on 
various factors, including the local epidemic situation, school charac-
teristics, and school HVAC system conditions. S2 is cost-effective and 
efficient at reducing infection risks. If MERV 13 filters are not accom-
modated in the school HVAC system, S1 and S2 can be used, and further 
increases in ventilation or in the proportion of hybrid learning may be 

Fig. 4. Distribution of average school infection risk under various ventilation rates.  
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adopted according to the infection risk, school system capacity, and 
teaching quality. 

3.3. Sensitivity analysis 

In addition to different intervention strategies, the infection risk in 
schools is also sensitive to changes in multiple factors, including the 
infection rate of the population, exposure time in schools, occupant 
density, and the students’ pulmonary ventilation rate. In this study, a 
sensitivity analysis was conducted to quantify the influence of these 
factors given the estimated ranges detailed in Table 5; the results of this 
analysis are shown in Fig. 6. The infection risk shows a near-linear 
relationship with the exposure time. The change in exposure time 

within the estimated range has a limited impact on infection risk 
because the average number of hours in the school day do not vary 
distinctly across the U.S. The infection risk increases with an increase in 
the infection rate parameter. The infection rate varies significantly 
across counties, leading to great changes in school infection risks. For 
instance, Forest County, Pennsylvania, exhibits the highest infection 
rate among all counties of 32.6% and a county infection risk of 32.9%, 
whereas the average infection risk for all counties nationwide is only 
3.8%. Schools located in counties with high infection rates are expected 
to be exposed to greater risk levels and will need to adopt much stricter 
mitigation measures to effectively control the infection risk. Considering 
occupant density, the results show a sharp decrease in the infection risk, 
with the parameter changing from 3 to 10 square meters per student; the 

Fig. 5. Infection risk for each state with different intervention strategies: (a) the baseline scenario; (b) with MERV 13 filtration; (c) with 50% of students learning 
online; and (d) when increasing the ventilation rate by 100%. 

Table 6 
School distribution by state and county.  

School level Max. Min. Mean SD 

State County State County State County State County 

PK 5.13% 40% 0.00% 0% 1.11% 1.04% 0.011 0.032 
Elementary 67.76% 100% 49.67% 0% 58.15% 51.61% 0.039 0.118 
Middle 24.73% 50% 7.10% 0% 14.47% 15.71% 0.030 0.089 
High 31.21% 100% 11.02% 0% 18.73% 25.63% 0.042 0.113 
Secondary 5.46% 100% 0.53% 0% 2.18% 1.37% 0.011 0.037 
Combined 14.07% 100% 1.97% 0% 5.36% 4.64% 0.026 0.071 

PK: pre-kindergarten; SD: standard deviation 
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trend then flattens after this point. Nationwide, the infection risk rea-
ches 10.8% for schools with the highest occupant density, while the 
lowest value is 1%. The mean and median values are close, and the 
infection risk is 2.6% with a mean value of 14.93 and 2.8% with a me-
dian value of 14.04, respectively. These results indicate that, for most 
schools, the current occupant density is appropriate, and further re-
ductions in occupant density may not lead to a significantly reduced 
infection risk. For schools with high occupant density (e.g., 3 to 10 
square meters per student), it is recommended that the density be 
reduced to the average level (e.g., 14.93 square meters per student). The 
infection risk increases as the pulmonary ventilation rate rises, with the 
rate of change increasing as well. The annotation in red dashed lines in 
Fig. 6(d) indicates the mean pulmonary ventilation rates of different 
school levels (as shown in Table 2) and the corresponding infection risk. 
The infection risk is 1.4% for pre-kindergarten students (aged 3–5 
years); 2.6% for elementary school students (aged 5–11 years); and 5.3% 
for middle, high, and secondary school students (aged 11–18 years). The 
pulmonary ventilation rate increases with the maturation of children, 
leading to an even greater infection risk. Intervention strategies are 
necessary for schools with higher levels of infection risk to adopt to 
reduce the infection risk to a sufficiently low level. 

4. Discussion 

COVID-19 pandemic leads to significant education crisis all over the 
world. The worldwide school closure has affected over 80% of total 
enrolled students, and half of the students in more than 200 countries 
have experienced partially or fully school closures (UNESCO, 2021). 
Long-time school closures raise public concerns about the negative im-
pacts on children health, education, and financial burdens on the 
households (Van Lancker & Parolin, 2020). Therefore, as schools reopen 
and resume in-person instruction, effective operation strategies are 
essential to maintain a healthy and sustainable learning environment. 

Ventilation, social distancing, and filtration are three broadly uti-
lized strategies during the pandemic. Several studies have been dedi-
cated to discussing the impact of these strategies in the control of 
COVID-19 transmission, and achieved compatible results with this 

paper, despite of different pandemic scenario, indoor environment, and 
countries considered. Sun and Zhai (2020) introduced a distance index 
and a ventilation index in the Wells-Riley model to compute the infec-
tion risks in buses in China. Similar to our study, their results suggest a 
near-linear relationship between infection risk and the exposure time 
and demonstrate the efficiency of increasing ventilation and reducing 
occupant density in mitigating the infection risk. Shen et al. (2021) 
discussed the effectiveness of multi-scale strategies for reducing 
airborne infection risk of SARS-CoV-2 using Wells-Riley model for in-
door spaces, and suggested the higher efficiency of applying filters 
compared to solely increasing airflow rate, which aligns with our 
conclusion. However, in previous studies, the number of infectors were 
either set to be 1 for each room which is unlikely in the actual situation, 
or calculated using the infection rate estimated from limited sample size. 
To overcome the limitation, this study leveraged data-driven and 
scenario-based analysis to evaluate school infection risk under various 
intervention strategies considering both long-term and short-term real-
istic pandemic scenarios. 

Regarding the selection of intervention strategies in this study, given 
the importance of in-person interaction for student learning, the inter-
vention strategy only considers that up to 50% of students would be 
learning online. Considering the current condition of most school HVAC 
systems, although increasing room ventilation rates is efficient in 
reducing infection risks, the ventilation rate cannot be increased beyond 
the system capacity. In this paper, doubling the baseline ventilation rate 
was considered to ensure that the proposed strategy would be affordable 
for most schools. Implementing filters with higher MERV ratings (e.g., 
MERV 14–16) would only have a slight effect on decreasing the infection 
risk but would generate additional product and energy costs. For 
instance, the average school infection risk in December is 2.34%, 2.04%, 
1.96%, and 1.85% for implementing MERV 13–16 filters, respectively. 
With the increase of MERV ratings, more energy is required to overcome 
additional pressure drop, and the purchase cost increases from $ 11 per 
filter for MERV 13 filters to $50, $90, $125, $150 for MERV 14–16 fil-
ters, respectively (Azimi & Stephens, 2013). Thus, implementing MERV 
13 filters was adopted as filtration intervention strategy. It is found that 
filtration is most effective in reducing the infection risk, resulting in a 

Fig. 6. Sensitivity analysis of parameters: (a) exposure time; (b) infection rate; (c) occupant density; and (d) pulmonary ventilation rate.  
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risk reduction of more than 30% relative to that achieved with either 
ventilation increase or hybrid learning in both considered pandemic 
scenarios. However, to maintain a healthy school environment, it is 
suggested that multiple intervention strategies be adopted simulta-
neously. Beside the direct impact of intervention strategies to the 
airborne infection risk, it has been proved that poor air quality caused by 
pollutants (e.g., particulate matters and volatile compounds) may lead 
to acceleration of the contagion of SARS-CoV-2 (Agarwal et al., 2021). 
The intervention strategies can also improve the indoor air quality, and 
further reduce the transmission of SARS-CoV-2. Other technologies can 
be considered for sustainable building retrofitting together with the 
intervention strategies (e.g., natural ventilation, botanical biofilters 
(Irga et al., 2017; Abdo et al., 2019), passive cooling techniques (Abdo 
et al., 2020) to maintain healthy indoor environment and human 
comfort. 

The infection risk may vary significantly across countries due to the 
differences in population size, disease prevalence, infection- 
hospitalization ratios, fraction of immunity, etc. However, the findings 
in this study can provide insights for other countries regarding the risk 
control during the pandemic. For instance, the effectiveness of inter-
vention is analyzed and compared, including filtration, ventilation, and 
social distancing achieved by online learning, indicating that filtration 
strategy can be widely adopted for schools worldwide. In addition, the 
framework can be extended to other infectious diseases in other counties 
by considering specific disease characteristics and epidemic and oper-
ation scenarios. 

5. Conclusion 

The airborne infection risk of SARS-CoV-2 in U.S. schools has been 
estimated under different epidemiological scenarios. Multiple inter-
vention strategies, including increased ventilation, air filtration, and 
hybrid learning, are modeled to evaluate their effectiveness in reducing 
the infection risk. Two epidemiological scenarios were considered, 
including a one-year pandemic scenario and a current epidemiological 
scenario. A series of findings and important insights were derived as 
follows, which will provide insights for schools and governments to 
develop guidelines on adopting appropriate intervention strategies to 
mitigate airborne infection risk considering epidemic situation and 
school characteristics.  

1 The airborne infection risk in schools exhibits seasonal patterns, with 
the average infection risk in all schools ranging from 3.85% in the 
summer to 6.83% in the winter under the one-year pandemic sce-
nario, indicating the necessity of adjusting mitigation measures over 
the year.  

2 The effectiveness of intervention strategies varies with different 
school levels and pandemic periods and, thus, requires individual 
schools to adopt variable intervention strategies over the long term. 
In general, schools with higher school level experience higher risk. 
For instance, the infection risk in pre-kindergarten remains low 
throughout the year, and the implementation of MERV 13 filters can 
limit the infection risk to below 1%. For elementary schools, 
implementing all strategies are suggested in most months, while, in 
months with lower prevalence rates (e.g., summertime), schools can 
adopt fully in-person learning in concert with filtration and increased 
ventilation. For other school levels (e.g., middle, secondary, and high 
schools), the infection risk may persist above 1% in some months 
even after implementing all strategies. Additional mitigation mea-
sures, such as wearing masks and enacting further social distancing, 
are needed to ensure an acceptable risk level.  

3 The relationships between infection risk and ventilation rates are 
depicted using Monte Carlo simulation, illustrating the efficiency of 
increasing the ventilation rate on reducing the infection risk and 
demonstrating the significance of combined intervention strategies 
when considering the capacity of school systems.  

4 The infection risk for each state is computed based on the infection 
risk of the counties in the state under normal operations as well as 
various intervention strategies based on the current epidemiological 
scenario. Schools with the baseline ventilation rate show a high 
infection risk across the U.S., with more than 90% of the counties 
exhibit an infection risk of greater than 1%, indicating the necessity 
of intervention strategies to maintain a sustainable indoor environ-
ment. The results show that increasing the ventilation rate by 100% 
and having half of students learn online have similar impacts on 
reducing infection risks, while implementing air filtration is more 
efficient than either of the strategies, with over 30% less than the risk 
levels correlating with ventilation enhancement and hybrid learning.  

5 Sensitivity analysis is conducted to further illustrate the impact of 
the characteristics of schools and the epidemic situation on infection 
risk. In general, the infection risk shows a near-linear relationship 
with the exposure time in schools. It is also found that the current 
occupant density is appropriate for most schools, while it is recom-
mended that the density be reduced to the average level (e.g., 15 
square meters per student) for schools with higher occupant density. 

There remain some limitations in this paper. First, the estimated 
infection risk indicates the daily infection risk based on the exposure 
time in a single day, ignoring the effect of probability transition due to 
continuous exposure in schools, which may result in the underestima-
tion of the result. Future study may consider the effect from the previous 
school days according to the specific schedule. Second, the model used 
in this study assumes that the infectious particles are well mixed 
throughout the whole school building, without considering the separa-
tion of rooms in the building and the separation of buildings if a school 
has multiple buildings. This is a simplification for national assessment of 
school infection risks. To accurately model the infection risk in a specific 
school, future research is needed to develop new simulation-based 
approach to incorporate detailed information of the school. Third, as a 
scenario-based analysis, derived results and findings regarding infection 
risk and intervention strategies are based on a one-year pandemic sce-
nario and a short-term county-level epidemiological scenario, which 
might be different from actual situations. Leveraging the findings and 
insights regarding impacts of various intervention strategies on infection 
risk under different scenarios, schools and governments can design their 
own strategies based on their specific characteristics and epidemic 
conditions. 
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